通过两种作业模式的比较,来检查动态初始化的可靠性以及数据链的稳定性,从而检查成果是否有质量问题,复测比较法:这种方法有两方面的含义:其一。是在每次迁移基准站后先复测前一基准站上已测过的点1-3个,并现场比较其成果,从而判断数据链工作的可靠性,确认没有问题以后,才进行新的观测:其二,是在每次重新初始化成功后,先复测附近已测过的点1-3个,现场比较其成果,从而判断这次的初始化是否正确可靠,确认初始化没有问题以后,才进行新的观测。其次还有电台变频法:其原理就是这种方法是在测区内建立两个或两个以上的参考站,每个参考站都用各自不同的频率发射差分改正数据;流动站进行观测时,其电台配有变频开关,可以选择接收不同的参考站发射的差分改正数据,从而在每个点上实时地接收某一个参考站的差分改正数据,即可获得1个成果:此后电台切换为另一个频率,又可接收到另一个参考站的差分改正数据,得到同一点的另一个成果,实时地比较多个成果的数据,就可以判断这次观测有无质量问题,该方法具有实时性,是数据质量检核的一个创新。 RTK天线能够在复杂的环境中稳定工作,为工程测量提供可靠的保障。深圳增益RTK天线
由于RTK容易受到卫星状况、外界环境等影响,加上不能像静态GPS测量有检核条件,因此RTK有其局限性,故RTK测量成果的精度和可靠性都需要进行验证。针对GPSRTK的精度可靠性的研究,很多学者提出了很多精度分析的方法,比如列举影响GPSRTK测量的因素,提出改善影响因素条件来提高精度,如郭建东等,采用的方法是把数据和控制点进行对比,看看它们误差的差别,罗满建等通过实际工程来验证精度。用了静态观测值和真实值来对比GPSRTK的成果从而来检核RTK数据。不少学者对数据检验也提出了一些方法,如张志勇提出分别在不同的已知点上做基站从而对比测量结果的质量;郭建东等提出的已知点位比较法,即作为测量起算数据的高级控制网,一般用静态GPS获得,具有很高的可靠性,可以通过将己知点纳入到测量链中的方式进行检查。讨论GPSRTK的点的准确度和误差。还有文章只从GPSKTK的技术上来研究其精度的问题。如潘宝玉等文中讨论正确求解坐标转换参数,合理设置基准站和限制作业半径,还有观测卫星的图形强度要高等来提高GPSRTK成果的精度。 深圳GPS101RTK天线RTK天线,助力应急救援,实现定位与快速响应。
基准站上应配置双频全波长GPS接收机,该接收机能同时提供精确的双频伪距观测值。基准站按规定的采样率进行连续观测,并通过数据链实时将观测资料传送给数据处理中心,其通信方式可采用数字数据网DON或其他方式。而流动站可以采用数字移动电话网络,如GSM、CDMA、COPD或GPKS等方式向控制中心传送标准的NMEA位置信息,告知它的概位。控制中心接收到其信息后重新计算所有GPS观测数据,并内插到与流动站相匹配的位置。数据处理中心根据流动站送来的近似坐标来判断该站位于哪三个基准站所组成的区域内,然后根据这三个基准站的观测资料求出该流动站处所受到的系统误差,再向流动站发送改正过的KTCM信息,流动站根据接收到的KTCM信息,结合自身GPS观测值,组成双差相位观测值,快速确定整周模糊度参数和位置信息,完成实时定位。流动站可以位VRS网络中任何一点,这样流动站的RTK接收机的定位系统误差就能减少或削弱,提高了定位的准确度、可靠度。这是一种为一个虚拟的、没有实际架设基准站建立原始基准数据的技术,故称之“虚拟基准站”(VRS)。
GPS卫星处在两万多公里的高空,从卫星发出信号到接收机接收,中间要经过电离层、对流层以及来自多方面的干扰,其信号一般十分微弱,通常只有-50~-180dB。同时,由于RTK数据链采用超高频(UHF)电磁波,它的传输距离与接收天线的高度、地球曲率半径以及大气折射等因素有关。因此,要提高GPS信号接收的质量,基准站必须远离各种强电磁干扰源(如微波站、寻呼台发射塔、变电站、高压线、电视台等);同时,为了减少多路径效应的影响,基准站周围应无明显的大面积的信号反射物(如大面积积水域、大型建筑物等):另外,要求基准站电台天线和移动站天线之间无大的遮挡物(如高层建筑物、高山等),且天线尽量设置高一些,以提高电台信号的传输距离。RTK 天线,科技助力,为物流运输提供高效的定位服务。
高精度测量型天线由无源天线和低噪声放大器两部分组成,无源天线采用圆形微带贴片的结构形式,低噪声放大器置于金屏蔽罩内,屏蔽罩的作用一是保护低噪声放大电路免受外部自然环境条件影响,二是屏蔽外界其他信号的干扰,确保低噪声放大电路稳定的工作。由于微带天线的工作带宽不是很宽,这是微带天线的固有特性,所以单层的微带天线无法覆盖包括四个卫星导航系统的所有频点,本设计中分为两个天线分层上下布局方案,分别覆盖高频和低频两个频段,每一层对应于一个连续的频段,该连续的频段分别覆盖不同的卫星导航频点。本设计中,上层工作于较高的频段,覆盖了BDSB1/GPSL1/GLONASS L1三个导航频点,下层工作于较低的频段,覆盖了BDSB2/GPSL2/GLONASSL2/GPSL5/GALIE0E55个导航频点。RTK天线的小型化设计,方便携带和安装,适用于各种场合。深圳增益RTK天线
RTK天线,提升GIS数据采集精度,助力地理信息发展。深圳增益RTK天线
尽管常规RTK定位技术是目前**为***使用的测量技术之一,使它的应用受到不少因素影响与限制,但就GPS系统而言,仍有一些固有因素,用户无法控制,其使所测成果的可靠性带来影响。
(1)星数在RTK定位测量中,不仅在0TF求解末知模糊度时,需要5颗共同星,而且在RTK动态验潮过程中,也需要能跟踪到5颗星。截止高度角低于15°时,共同星数将增加。但是,由此而采集到的数据含有较差的信噪比,这将使求解模糊值的时间延长。虽然,星数增加太多对RTK定位的精度没有显著提高,但定位的可靠性有了很好提高。(2)卫星几何强度因子卫星几何强度因子将影响***定位成果的质量。目前常用PDOP(或XDOP)来衡量其优劣。在RTK中,PDOP不宜大于3。 深圳增益RTK天线
文章来源地址: http://txcp.chanpin818.com/tianxianyk/txtxhv/deta_25107848.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。